LARGE SETS CONTAINING NO COPIES OF A GIVEN INFINITE SEQUENCE

EFFIE PAPAGEORGIOU

Abstract

Let \mathbb{A} be a discrete, unbounded, infinite set in \mathbb{R}. Can we find a "large" measurable set $E \subset \mathbb{R}$ which does not contain any affine copy $x+t \mathbb{A}$ of \mathbb{A} (for any $x \in \mathbb{R}, t>0$)?

If a_{n} is a real, nonnegative sequence that does not increase exponentially, then, for any $0 \leq p<1$, we construct a Lebesgue measurable set which has measure at least p in any unit interval and which contains no affine copy of the given sequence. We generalize this to higher dimensions and also for some "non-linear" copies of the sequence. Our method is probabilistic.

Joint work with M. Kolountzakis (Univ. of Crete).

Current address: Department of Mathematics and Applied Mathematics, University of Crete, Heraklion, Greece

